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1. Summary 

Objectives 

The general objective of this work was to develop methodologies to account for crossbred and genomic 

data for a sustainable selection for feed efficiency. These activities were essentially developed in task 

5.4 of the Feed-a-Gene project. 

Specifically, we have worked on three main topics of research: 

1. Assess the contribution of the additive and dominance genetic effects to the phenotype 

expression of several traits, especially those related to feed efficiency, within crossbred and 

purebred animals, and the genetic correlation to the corresponding traits between the two 

populations, 

2. Identify optimal genomic prediction models, both in terms of efficiency in calculations and 

accuracy of estimates, that enable unbiased and accurate estimation of the genetic 

parameters and genomic breeding values that are required for implementation in practice,  

3. Combine all available and newly generated knowledge in terms of genetic variances and 

economic values to propose a new index to improve feed efficiency.  

Rationale: 

Selection to improve feed efficiency in monogastrics has been practiced for several decades, despite 

the practical difficulties and costs related to routinely measuring feed intake and efficiency on a large 

scale. These selection strategies so far have mostly been based on measured feed intake and efficiency 

on purebred animals, because selection takes place within purebred lines. The breeding goal, however, 

is to improve feed efficiency in the crossbred production animals. Strategies to select purebred 

selection candidates based on performance measured on crossbred offspring or relatives have been 

proposed previously, but linking crossbred performance back to the purebred animals was often 

challenging, while the links were relatively weak. Genomic selection is the state-of-the-art selection 

approach that is used in modern breeding programs. The previously described limitations can be 

overcome by using genomic selection of purebred animals, based on a crossbred training population. 

This requires genomic prediction models that can compute genomic breeding values for purebred 

animals for crossbred performance. In such models, it is important to appropriately model the 

crossbred and purebred animals relative to each other.  From the research undertaken in Task 5.4 of 

Feed-a-Gene, as well as from recently published research, a straightforward genomic prediction model 

that models at least one so-called metafounder for each of the parental lines, appears to be the most 

appropriate choice. Such a model provides genomic breeding values with accuracies similar to those 

obtained with more sophisticated models and similar or less bias than other models, while being one 

of the most computationally efficient models.  

Using genomic information in the estimation of breeding values provides the opportunity to explicitly 

model dominance deviations, next to the traditional additive breeding values. It was expected that 

explicitly modelling dominance deviations is especially relevant in crossbreeding, where the crossbred 

performance partly relies on heterosis, which is mainly caused by dominance effects. Within Task 5.4 

of Feed-a-Gene, an empirical study was conducted that showed that 6-12% of the phenotypic variance 

of feed efficiency related traits in pigs is caused by dominance effects, while 18-30% is caused by 
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additive effects. Based on these results, as well as recent studies that investigated the impact of 

explicitly modelling dominance deviations in genomic prediction models, it is concluded that the 

potential benefits from accounting for dominance is likely to be relatively small for improving feed 

efficiency and growth. 

In WP5, several new traits and characteristics have been proposed and investigated, that have some 

relationship with feed intake and/or efficiency, and that may be easier to record than feed intake or 

efficiency itself. For each of those traits, the question is whether breeding programs in practice should 

consider measuring those and selecting on them. Therefore, the ultimate approach, as defined in Task 

5.4, was to evaluate new selection indices, including those new traits. We showed that selection 

response for crossbred feed efficiency can be increased by: including an economic weight for the 

crossbred rather than the purebred trait, adding crossbred information for traits not measured directly 

on purebred selection candidates, and additionally adding indicator traits, of which especially 

digestibility, feeding behaviour, and biomarkers are beneficial. Including genomic prediction is also 

recommended, however this would require investment to maintain a reference population of 

crossbred pigs. 

Teams involved:  

Stichting DLO, Wageningen University & Research Centre (DLO), The Netherlands 

Topigs Norsvin, The Netherlands 

Institut National de la Recherche Agronomique (INRA – GenPhySE), France 

Species and production systems considered:  

The results of this deliverable are mostly applicable to pigs, poultry, and rabbits, as the common 

production systems of these species commonly rely on crossbreeding. Throughout, the main focus is 

on pigs, as most information is available and generated in WP5 for this species, but illustrations for the 

broiler case are added in a few places. All 3- or 4-way crossbred production systems could benefit from 

these results, provided that data and (genomic) tools are available. 
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2. Introduction 

Pigs and poultry production schemes rely on crossbreeding, where the production animals are 

crossbred (CB) animals (Figure 1). Thus, the breeding goal for these species is to increase CB 

performance under commercial farming conditions, while selection of purebred (PB) animals typically 

is based on PB performance measured in a nucleus environment with high levels of biosecurity. The 

genetic differences between PB and CB performance is quantified by the purebred-crossbred genetic 

correlation (rpc), which is typically below unity for many traits, with average reported values in the 

range of 0.6 to 0.8 for pigs (Wientjes and Calus, 2017) and poultry (Bos, 2020). When genetic 

correlations between PB and CB performances differ from unity, the genetic gain reached at the 

nucleus level is only partly transferred to the production level as a correlated response. One approach 

to overcome this issue is to account for CB information (i.e., genetic and phenotypic data) in the genetic 

evaluations of the PB lines to select them for improving CB rather than PB performance. 

 
Figure 1. A schematic overview of a breeding scheme in pigs, where the commercial animals are 
crossbreds. 

Selection for feed efficiency and related traits has been common practice in pigs (Knap and Wang, 

2012) and poultry (Neeteson-van Nieuwenhoven et al., 2013) for more than 30 years. Measuring feed 

efficiency involves measuring all feed consumed during a predefined period of time, for instance 

typically 10 days for broilers, and the weight of the animals both at the beginning and the end of this 

period. With this information, the feed efficiency can be computed as the growth divided by the total 

amount of feed consumed in this period. The feed conversion ratio, commonly used in these livestock 
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productions to quantify efficiency, is the inverse of feed efficiency. Feed efficiency is typically 

measured on PB selection candidates, and is laborious, because it requires weighing both the feed and 

the animals. As for other traits, this trait in PB animals is not necessarily the same as in CB animals. In 

addition, because of the costs involved, an important question is whether it is possible to improve feed 

efficiency by indirect selection on correlated traits. 

Therefore, the overall objective of this deliverable is to gather methodologies developed in the Feed-

a-Gene project to account for CB and genomic data for a sustainable selection for feed efficiency. To 

address this objective, we divided our research in three main topics: 

Dissecting genetic variance into its additive and dominance genetic components and PB-CB genetic 

correlation 

The extent to which PB selection can change a CB trait depends strongly on the partitioning of the 

phenotypic variance, and the purebred-crossbred genetic correlation (rpc). Here, we dissected the total 

genetic variance of several traits in pigs into additive and dominance components, and did this both 

for PB and CB pigs. Expected values of the rpc were derived by reviewing the available literature for 

pigs and poultry.  

Optimal genomic prediction models for crossbreeding 

Including information of CB animals in genomic prediction models implies that multiple breeds are 

combined in one analysis, while the CB animals themselves are a mixture of different breeds. An 

important challenge is to separate out the effects of the different breeds involved in the CB animals, 

and to make sure that each of those are computed relative to an appropriate base. In previous 

research, it was observed that considering the breed-origin-of-alleles of CB animals was beneficial only 

in some specific situations, while computations became considerably more cumbersome (Sevillano, 

2018). In this task, we investigated the possibility to implement the metafounder approach instead 

(Legarra et al., 2015), which enables to properly scale the bases of different breeds relative to each 

other. 

Newly proposed selection strategies for feed efficiency 

The ultimate activity of this task was to combine all generated results within this task, together with 

indicators of e.g. welfare, robustness, product quality, and digestibility (Tasks 5.1 and 5.3), to propose 

new selection strategies for feed efficiency. Here, the approach taken was to first collect and 

summarize phenotypic, genetic, and economic parameters from the traits defined in previous tasks 

(5.1-5.3). Additional traits were added from published literature and parameters estimated from 

datasets made available within Feed-a-Gene. It was important to collect as much information available 

on correlations between PB and CB traits. Some correlations between the new traits or between CB 

and PB needed to be approximated. The parameters were then combined in a selection index, which 

weighs the sources of information to maximize the genetic gain of the traits in the breeding objective. 

In this case feed conversion ratio was considered to be the main breeding objective, as it is a measure 

of feed efficiency and currently widely used in breeding programs. The index was tested with various 

combinations of information sources and breeding objectives, to provide sensitivity and importance of 

the new traits. All indices followed the principles outlined by Hazel (1943), and were built using the 

program SelAction (Rutten et al., 2002). 
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3. Results 

3.1 Additive and dominance variance components 

Variance components, including the additive genetic variance, the heritability, and genetic correlations 

between traits, are important to predict possible response to selection in all breeding goal traits, and 

other traits related to those. The breeding goal in pigs and poultry typically is to improve CB 

performance, which enables to benefit from breed complementarity between parental lines, as well 

as heterosis (i.e., the greater performance displayed by the CB individuals compared to the mean of 

the parental performances). It has been widely accepted that heterosis is mostly due to dominance 

(e.g. Shull, 1908). Dominance arises from the interaction between alleles at the same locus and cannot 

be inherited. However, if these non-additive genetic effects are properly accounted for in genetic 

evaluations, they can increase the goodness of fit of the model and should consequently lead to an 

improvement in the prediction accuracy of the estimated genomic breeding values. In addition, 

increasing the contribution of dominance at the CB level would directly increase heterosis and thus CB 

performance. Crossbred animals benefit more from positive effects of dominance than purebreds do, 

because CB animals have a higher level of heterozygosity. In terms of variance components, therefore, 

the amount of variance that is explained by dominance deviations, that is a non-heritable component 

of the genetic variance, is important for pig and poultry CB production. Using genomic information 

allows a much easier modelling and more powerful experimental design to estimate dominance 

genetic effects compared to using pedigree information, as individual genotypes at each locus become 

available for modelling.  

In this task, using genomic models we have estimated how the total genetic variance is partitioned into 

its additive and non-additive components in 22 PB (Piétrain) and CB (Piétrain x Large White) pig traits. 

The analysed traits can be classified into five groups: growth rate and feed efficiency, carcass 

composition, meat quality, behaviour, and boar taint and puberty.  Additive and dominance variances 

were estimated in univariate genomic models (Vitezica et al., 2016), including a genomic inbreeding 

covariate. Despite the uncertainty of the estimates because of model complexity and the limited 

amount of data available, it gives a good picture about the influence of dominance variance in the 

phenotypic expression in a wide range of traits of different nature, including those related to growth 

and fee efficiency (Tusell et al., 2019). For the traits of interest in this project (i.e., average daily gain, 

average daily feed intake, and feed conversion ratio), the dominance genetic variance explained 6-12% 

of the phenotypic variance in PB and CB, while the additive genetic variance explained 18-30% (Figure 

2). These results suggest that the potential benefits from accounting for dominance mentioned above 

may be relatively small for improving feed efficiency and growth. 
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Figure 2. Ratios of dominance deviation variance to phenotypic variance estimated for average daily 
gain (ADG), feed conversion ratio (FCR) and average daily feed intake in purebred and crossbred pig 
populations. Results obtained from Tusell et al. (2019). 

3.2 The purebred-crossbred correlation (rpc) 

In pigs, 11 studies estimated in total 28 rpc values for average daily gain, and five studies estimated in 

total nine rpc values for traits related to feed (Table 1). Average rpc values all fell in the range of 0.55 to 

0.70, and thus are considerably lower than 1. In broilers, only rpc estimates are available for body 

weight, with an average value of ~0.75, but not for any trait related to feed (Bos, 2020). These reported 

rpc values suggest that feed efficiency related traits indeed are different traits in crossbreds compared 

to purebreds, and that use of crossbred information is warranted to improve accuracy of genomic 

selection for feed efficiency in crossbred pigs, and probably also in crossbred broilers. 
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Table 1. Average reported rpc values for feed efficiency related traits in pigs (Wientjes and Calus, 2017). 

Trait rpc (SE)1 Number of 
estimates 

References 

Average daily gain 0.70 (0.14) 28 Wong et al., 1971; Standal, 1977; McLaren et 
al., 1985; Brandt and Täubert, 1998; Lutaaya 
et al., 2001; Nakavisut et al., 2005; Habier et 
al., 2007; Stamer et al., 2007; Nagyné 
Kiszlinger et al., 2011; Tusell et al., 2016; 
Godinho et al., 2018 

Feed intake 0.65 (0.15) 1 Godinho et al., 2018 

Feed conversion ratio 0.75 (0.20) 4 Nakavisut et al., 2005; Habier et al., 2007; 
Tusell et al., 2016; Godinho et al., 2018 

Feed efficiency 0.55 (0.36) 2 Wong et al., 1971 

Residual feed intake 0.62 (0.18) 1 Godinho et al., 2018 

Residual energy intake 0.67 (0.18) 1 Godinho et al., 2018 
1Average estimate and standard error (SE) across reported estimates. 

3.3 Optimal genomic prediction models for crossbreeding 

Future genomic evaluation models to be used routinely in breeding programs for pigs and poultry need 

to be able to optimally use information of CB animals to predict breeding values for purebred selection 

candidates. Crossbred information is important given that the rpc is <1 for most traits (see section 3.2). 

In addition, because genomic evaluations are run at least once a week in most breeding companies, 

the computation efficiency of the proposed model is of major importance. 

Accuracy & bias 

Both from the work in Task 5.4 and related projects, combined with recent literature, four different 

models have been identified that are potentially suitable (see description in Table 2), and compared in 

terms of accuracy, bias and efficiency. The simplest model ignores the differences between lines 

(GBLUP_gen). Xiang et al. (2017) show that the accuracy of ssGBLUP with metafounders (ssGBLUP_mf) 

is similar to the accuracy of ssGBLUP_BOA, which requires phasing to assign breed-of-origin of alleles 

in CB animals. Results from Sevillano et al. (2017) show that GBLUP_BOA typically gives similar results 

as GBLUP_gen and GBLUP_spec, and perhaps only has some advantage for low heritability traits. 

Accurately assigning breed-of-origin is possible (Vandenplas et al., 2016; Calus et al., 2019), regardless 

whether using pedigree data or not (Sevillano et al., 2016) but this step is quite time consuming. 

Table 2. Descriptions and comparison of models for the prediction of CB performance. 

Abbreviation Model description Accuracy Bias* Efficiency 

GBLUP_gen Ignoring differences between lines + + ++ 
GBLUP_spec Using line-specific allele frequencies + + ++ 
GBLUP_mf Using metafounders + ++ ++ 
GBLUP_BOA Line-specific partial relationships + + - 

*The bias is measured as the regression coefficient of true on estimated breeding values. 

Using metafounders in a GBLUP model has been studied using a simulation study in Feed-a-Gene (van 

Grevenhof et al., 2019). Results show that the accuracies of GEBVs obtained using 60K-like SNP panels 

and pedigree information were very similar, when using metafounders or not (Figure 3a). These results 

were confirmed in empirical analyses using layer chicken data (Vandenplas et al., 2017). Theoretically, 



Feed-a-Gene – H2020 n°633531  

  

 Page 10/20 
 

using metafounders also solves problems which are generally present in practical data. For instance, 

using metafounders generalises the concept of genetic groups when non-zero relationships exist 

between populations, and handles those in a robust way, without assuming or entering any 

foreknowledge or information in the model description. 

 
Figure 3a. GEBV prediction accuracies in GBLUP 
models with versus without implementation of 
metafounders (mf) for populations with closely 
related and unrelated pedigrees in PB and CB 
populations. Red bars represent models with mf. 

 
Figure 3b. Convergence criteria of GBLUP 
models with versus without implementation of 
metafounders (mf) for populations with closely 
related and unrelated pedigrees. Red bars 
represent models with mf. 

Efficiency 

The use of metafounders in GBLUP_mf gives a model that has similar or somewhat better convergence 

properties compared to other models (Figure 3b). Additional computations for the GBLUP_spec and 

GBLUP_mf models, relative to GBLUP_gen, are trivial. The GBLUP_BOA, in contrast, requires additional 

computations to derive line-origin-of-alleles and to obtain separate partial relationships matrices per 

line (Christensen et al., 2015). Thus, in terms of computational efficiency, GBLUP_mf is very 

competitive as it is equally efficient as standard models in terms of computations required to set up 

the model, while it also seems more efficient in terms of model convergence. 

Dominance 

As stated above, improved performance of CB animals is partly due to heterosis. One of the major 

genetic bases of heterosis is dominance. Recently, it was shown that including dominance in the model 

tends to yield a more robust model (Duenk et al., 2017). Empirical analyses, however, showed that 

inclusion of dominance in the GBLUP model does not improve predictive ability for CB animals, 

whereas inclusion of inbreeding depression does (Xiang et al., 2016). At the same time, inclusion of 

dominance doubles the number of effects to be estimated in the model, while the added complexity 

to include inbreeding depression is trivial. Given the moderate to low amount of dominance genetic 

variance estimated for growth and feed efficiency traits (see section 3.1), including dominance 

deviation effects in genetic evaluations is not advisable.  
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Which data to record in practical scenarios? 

Considering the expected benefit of using crossbred information in breeding programs to improve feed 

efficiency for pigs and poultry, an important question is which kind of data needs to be recorded from 

CB animals. Is it sufficient to record crossbred phenotypes, or should the crossbred animals also be 

genotyped? Many breeding programs may have a preference to limit genotyping as much as possible 

to selection candidates, and thus to PB animals. A comprehensive simulation study in broilers showed 

that with an rpc value of 0.9 it is not beneficial to phenotype CB animals (Chu et al., 2018). When the 

rpc is 0.5 to 0.7, including the range of observed rpc values for feed related traits in pigs (Table 1), it was 

optimal to collect 30% of the phenotypes from CB animals, and also to spend 30% of the genotyping 

effort on CB animals. This suggests that in practical breeding programs, the optimal approach is to 

spread both the phenotyping and genotyping effort across PB and CB animals. Thus, the optimal 

genomic evaluation model should be able to include both PB and CB animals. The genomic prediction 

model that includes at least one metafounder for each parental line can easily include both PB and CB 

animals, regardless whether all animals with phenotypes are genotyped or not. 

3.4 Newly proposed selection strategies for feed efficiency 

Past and current selection strategies for CB performance have not accounted for the fact that the rpc 

(the genetic correlation between CB and PB traits) is not equal to one. While the breeding goal has 

been for improved feed efficiency of CB pigs, the sources of information and the weight in selection 

indices have been for PB pigs. The first comparison that we made was between two selection indices. 

Both indices had the traits Feed Conversion Ratio (FCR), Average Daily Gain (ADG), and Daily Feed 

Intake (DFI) recorded only on PB animals. However, the economic weights for FCR and ADG were 

placed either on the PB or CB trait. Some of the most recent published economic values for feed 

efficiency traits were used (Ali et al., 2017). The economic values for ADG and FCR are calculated with 

a correction for cost of feed and DFI.  So the economic value for DFI is already added indirectly, and if 

an economic value was also placed on DFI directly the cost of feed would be double counted. This has 

been a common problem when calculating economic values for feed efficiency and other ratio traits in 

breeding programs (Gunsett, 1984; Goddard, 1998).   

Simply by shifting the weight of selection from PB traits to CB traits there are considerable 

improvements to FCR of CB animals (Table 3). There is a 25% improvement in CB FCR, 87% 

improvement to DFI, and a small 7% unfavourable change to ADG. All following indices continue to use 

economic weights on the CB traits ADG and FCR, with recording of PB traits on FCR, ADG, and DFI, this 

is henceforth referred to as the “Base index”. 
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Table 3. Response to feed efficiency traits when adding economic weights to PB or CB feed conversion 
ratio (FCR), and average daily gain (ADG). 

Response for trait Weight on production traits of 

(Current mean) Purebreds Crossbreds 

FCR of PBs (1.99 kg/kg) -0.031 -0.039 
FCR of CBs (2.59 kg/kg) -0.028 -0.035 
   
ADG of PBs (1061 g/day) 42.53 38.23 
ADG of CBs (882 g/day) 13.44 12.48 
   
DFI of PBs (2175 g/day) 9.79 -21.00 
DFI of CBs (2339 g/day) -13.28 -24.87 

To test the potential of the new traits developed in Feed-a-Gene, they were each individually added 

to the base index (Table 4). Having records for crossbred traits (including both old and new traits), they 

did not appear to have a large impact on crossbred feed efficiency traits or index accuracy. This is most 

likely because the crossbred traits were recorded as parental EBVs rather than own records as 

purebred animals would not have these traits recorded. The digestibility traits tend to have the largest 

improvement to the index accuracy, followed by the biomarkers (i.e., faecal nitrogen and insulin-like 

growth hormone). The production, perturbation, and meat quality traits had the largest or no change 

to FCR (Figure 4). The largest improvements to DFI and ADG were observed with biomarkers, 

digestibility, meat quality, and perturbation traits. 
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Table 4. Expected changes to feed efficiency traits, when adding new traits to the base index. 

   When trait added, 

   change to: 

Trait recorded in index C/PA 
Current 
mean 

Trait ADG DFI FCR 
Index 
accu-
racy 

Feed Conversion Ratio (FCR)1 C 2.59 kg/kg -0.035 12.48 -24.87 -0.035 0.260 

Feed Conversion Ratio (FCR)2 P 1.99 kg/kg -0.039 -0.07 1.85 0.001 -0.005 
Average Daily Gain (ADG) C 882 g/day 12.48     
Average Daily Gain (ADG)2 P 1061 g/day 23.57 -3.89 13.30 0.008 -0.075 
Indirect genetic effects of ADG C 882 g/day 10.65     
Indirect genetic effects of ADG P 1061 g/day 14.66 -0.63 20.06 0.009 -0.037 
Group recorded ADG C 881 g/day 0.94  0.01   
Group recorded ADG P 1053 g/day 0.21 0.01 -0.04   
Daily Feed Intake (DFI) C 2339 g/day -24.87     
2Daily Feed Intake (DFI) P 2175 g/day 15.08 -0.03 12.39 0.006 -0.020 
Group recorded DFI C 2277 g/day -2.57  -0.01   
Group recorded DFI P 2178 g/day 1.45 0.37 0.22 0.001 0.003 
DFI Perturbations C 0.49 -0.01     
DFI Perturbations P 0.66 0.02 0.91 1.64 -0.003 0.021 
Rate of feed intake P 99.8 g/min 1.26 4.60 20.82 0.006 0.038 
Occupation time of feeder P 42.98 min 0.80 0.83 4.06 0.002 0.003 
Digestibility of energy P 83.94 % 1.33 10.95 54.00 0.006 0.118 
Digestibility of Nitrogen P 78.6 % 2.15 11.59 57.08 0.006 0.126 
Digestibility of organic matter P 83.76 % 1.61 11.00 52.84 0.006 0.120 
Total lesion count P 28 -0.01 3.77 19.88 0.007 0.023 
Joint lesion count P 0.10 0.01 4.49 21.74 0.008 0.029 
Faecal nitrogen P 3.05 kg -0.01 11.69 43.01 0.013 0.100 
Insulin-like growth hormone   P 82.9 ng/ml 4.45 8.00 38.78 0.014 0.051 
Ultimate meat pH C 5.62 0.02     
Ultimate meat pH P 5.58 0.02  0.01   
Intra-muscular fat C 1.21 % 0.01  0.01   
Intra-muscular fat P 1.14 % 0.09 9.52 45.46 0.015 0.066 

ATrait recorded on CB or PB pigs. Note that if it recorded on CB pigs, the parental average EBV is used as it is not 
possible to have an own record. 
1Changes are relative to crossbred FCR, adding crossbred FCR to the base index had no change 
2Since the base selection index includes FCR, ADG, and DFI of PB traits, the results presented are for when these 
traits are removed from the base index. 
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Figure 4. Change to crossbred feed conversion ratio when new traits are added to the base index. 
Crossbred; CB, Purebred; PB. (*The response in FCR if the trait is removed from the index is presented, 
for the traits already in the base index.) 

Most of the traits have some benefit to a selection index for feed efficiency of CB pigs. The traits that 

appear to have the largest impact were included in a larger multi-trait selection index, based on the 

response to FCR, ADG, and DFI of CB animals, improvements to index accuracy, and the accuracy of 

the available parameter estimates (not presented). By removing one trait and then returning it to the 

index, the change in index accuracy can be used to determine the contribution each trait makes to the 

index (Figure 5). Also included were group recorded daily feed intake and intra-muscular fat, but they 

made no contribution to the index. Nitrogen digestibility makes a significant contribution (36.3%), as 

well as the feed efficiency traits ADG (27.4%), DFI (7.5%), and FCR (7.5%). 
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Figure 5. Contribution of each trait (recorded on purebreds only) to the expanded selection index. 

Adding traits does not always increase accuracy of the index or response to selection, due to 

parameters being an estimate with associated errors (Hayes and Hill, 1980). When adding genomic 

prediction of CBs it is no longer useful to include FCR recorded on PBs therefore it was removed from 

the index (Figure 6). Adding genomic prediction caused some redistribution of trait contributions, 

notably was the decrease in the contribution by Nitrogen digestibility. 

 
Figure 6. Contribution of each trait (recorded on purebreds only) to the expanded selection index, with 
genomic prediction added (for which a reference population of crossbreds would need to be 
maintained). 

Adding new traits defined in Feed-a-Gene in an expanded index improves selection for CB feed 

efficiency (Table 5). Information from the new traits in Feed-a-Gene improves both the accuracy of the 

index (allowing for faster rates of gain), and the economic value of the index (the added value comes 

from a large increase in ADG at the expense of a small decrease in response to FCR). The increase in 

DFI is because no economic weight is placed on the trait directly, as FCR and ADG are estimated 

corrected for DFI, if breeders wish to force a decrease in DFI, they would need to balance the economic 

weights for the three traits, but the method used here would optimize total feed efficiency. Adding 
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genomic prediction for FCR of CB animals has the largest improvement to the accuracy of the index 

and response to FCR, observed in both the base index and expanded index. 

Table 5. Expected changes to the index.  

Change in response for 

Base selection index  Expanded selection index 

Without 
genomic 

prediction 

With 
genomic 

prediction 
 

Without 
genomic 

prediction 

With 
genomic 

prediction 

Index parameters 
Accuracy of the index 0.260 0.330  0.408 0.420 
Economic value per sow joined €1.33 €1.67  €2.03 €2.04 
      
CB traits 
FCR of CBs (2.59 kg/kg) -0.035 -0.049  -0.030 -0.032 
ADG of CBs (882 g/day) 12.48 14.12  25.67 25.10 
DFI of CBs (2339 g/day) -24.87 -28.96  31.45 37.99 
      
PB traits 
FCR of PBs (1.99 kg/kg) -0.039 -0.042  -0.026 -0.032 
ADG of PBs (1061 g/day) 38.23 33.98  28.03 18.08 
DFI of PBs (2175 g/day) -21.00 -21.87  -27.85 -1.45 

 

Considering an average herd of 250 sows, a farmer that uses boars selected using the base index would 

add €332.5 (250 x €1.33) gross profit per generation. With the expanded index this increases to €507.5 

(250 x €2.03). Adding genomic prediction would add €417.5 and €510.0 gross profit per generation, 

for the base and expanded index, respectively. These changes highlight that implementing genomic 

prediction increases the gross profit when the base selection index is the starting point, while genomic 

prediction adds very little if the expanded selection index is already implemented. It is important to 

note that the changes indicated in Table 5 are additive, cumulative, and permanent, assuming the 

breeding objective is unchanged. Further work would be needed to determine the net profit, as the 

cost for genomic prediction and recording of the new traits is not included in this analysis.  

The indices presented are comparable because the same economic weights have been used. We have 

assumed the breeding objective is to maximize the response for feed efficiency of CB pigs. Any index 

can be refined by adding economic weights for the new traits or to force traits in a desired direction 

(such as reducing DFI), but this would require to estimate the economic weights for those traits, as 

these are currently not available. 

In conclusion, any new selection strategy for CB feed efficiency should include an economic weight for 

the CB rather than the PB trait. Given the traits used in this analysis, adding information recorded on 

CBs is beneficial only if traits from the same category are not recorded on the individual selection 

candidates. New selection indices should consider adding the new traits described by previous 

Feed-a-Gene tasks, as they do improve the response to selection of feed efficiency. Which traits to add 

is dependent on the cost of recording and ability to record phenotypes. However, traits from the 

following categories are likely to have the largest response in feed efficiency: digestibility, feeding 

behaviour, and biomarkers. Including genomic prediction is also recommended, however this would 

require investment to maintain a reference population of CB pigs. 
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4. Conclusions 

The results generated by the research in Task 5.4 of Feed-a-Gene showed that the phenotypic variance 

in feed efficiency related traits explained by dominance effects is relatively limited, and it is therefore 

expected that considering dominance effects will have a limited impact on achieved selection 

response. Evaluation of published estimated for rpc, the genetic correlation between PB and CB 

performance, showed that this parameter typically has values between 0.55 and 0.70 for feed 

efficiency related traits in pigs. Using those parameters in selection index calculations, we showed 

indeed that using crossbred information in breeding programs can considerably increase the selection 

response for CB feed efficiency related traits. To accommodate the use of CB information, both 

phenotypes and genotypes, in genomic prediction, we advise to use a model that includes at least one 

metafounder for each parental line involved in the crossbred production animals. Such a model is 

computationally efficient, and yields competitive accuracy and possibly less bias compared to 

alternative models. 

Starting from a base selection index, implementation of genomic prediction is predicted to every year 

increase gross profit per sow by €0.34. Moreover, including additional traits in the index, measured on 

purebred selection candidates, especially digestibility, feeding behaviour, and biomarkers, is predicted 

to every year increase gross profit per sow by €0.70. Once these additional traits are included in the 

expanded index, then implementation of genomic prediction hardly adds additional genetic gain. 

Before deciding whether to implement genomic selection, the expanded index, or a combination of 

both, the reported expected changes in gross profit still need to be adjusted for the costs of genomic 

prediction and recording of the new traits to evaluate changes in net profit. 
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