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A B S T R A C T

Policymakers and scholars are increasingly interested in result-based schemes to improve the performance of biodiversity conservation policies. However, the 
availability and accuracy of monitoring technologies challenge a shift from traditional input-based incentives to result-based schemes. Inspired by recent techno-
logical developments, we develop a model based on a Bayesian framework to analyze the policy implications of potential improvements in biodiversity monitoring 
quality. Our numerical results suggest that improving monitoring quality increases the number of farmers enrolling in the scheme and their efforts. The availability of 
monitoring technologies with sufficiently high quality could make result-based schemes more performative than input-based ones. Monitoring developments might 
unlock the potential of result-based schemes and lead to their wider adoption.

1. Introduction

Biodiversity conservation policies need monitoring programs that 
accurately measure biodiversity trends and are affordable (Sommerville 
et al., 2011). Technological innovations applied to monitoring can 
improve the value of a biodiversity policy if they reduce costs and time/ 
effort and overcome the need for technical expertise (e.g., taxonomists) 
that currently hamper the development of large-scale monitoring pro-
grams (Proença et al., 2017). Future perspectives in the advancements of 
monitoring techniques and approaches include citizen science (Ryan 
et al., 2018), DNA-based techniques (Hebert et al., 2016), automated 
image processing (Torresani et al., 2023) and automated passive 
acoustic monitoring (Biffi et al., 2024). In parallel, the recent de-
velopments of AI would enable the automation of processing the large 
datasets that monitoring technologies would create (Christin et al., 
2019; Lahoz-Monfort and Magrath, 2021). These novel techniques will 
bring new possibilities for biodiversity monitoring and for the range of 
potential uses of biodiversity data. This technological advancement 
might also entail policy implications.

Traditionally, in agricultural landscapes, farmers have been incen-
tivized to implement conservation practices through voluntary input- 
based payments (Hanley et al., 2012). For example, in the European 
Union Common Agricultural Policy, farmers may enroll in voluntary 

schemes to reduce the intensity of farming (either through a reduction of 
inputs or farmed land or through the establishment of seminatural ele-
ments) in exchange for a payment (Baylis et al., 2008; Gars et al., 2024). 
Often, these payments are based on the average opportunity costs, 
defined as the extra costs or loss of income involved in complying with 
the scheme. In such a case, biodiversity monitoring is mainly aimed at 
evaluating the policy impact and does not affect the potential farmers’ 
efforts and decisions. Despite some positive results, these types of 
environmental subsidies have been criticized for not being capable of 
halting farmland biodiversity decline (Pe’er et al., 2022). One of their 
problems is that the reward for the farmers is not linked to any actual 
outcome in terms of biodiversity conservation. Thus, there is a high risk 
of spending money for no conservation results (Ferraro, 2008).

To solve these problems, the scientific literature has suggested the 
adoption of result-based agri-environmental schemes (Burton and 
Schwarz, 2013; D’Alberto et al., 2024; Derissen and Quaas, 2013; 
Drechsler, 2017; Herzon et al., 2018; Tanaka et al., 2022).1 The idea 
behind this approach is to pay farmers not for their actions but for what 
they actually achieve in terms of conservation. Despite the apparent 
triviality of their rationale, implementing result-based schemes hides 
several challenges. One of the most relevant challenges is the uncer-
tainty around the payoff for farmers enrolling in the scheme (Bartkowski 
et al., 2021; Derissen and Quaas, 2013; Drechsler, 2017). Indeed, result- 
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based payoffs are subject to two sources of uncertainty. First, the success 
of conservation is subject to environmental uncertainty due to, e.g., 
weather variations (González-Trujillo et al., 2023; Lindenmayer et al., 
2019) and/or invasive alien species (McCann, 2000). Moreover, the 
effect of agri-environmental practices on biodiversity is not perfectly 
known (Duru et al., 2015). Second, result-based schemes inherently 
require monitoring activities to indicate whether a biodiversity target 
has been reached and consequently to gauge the payment on a measure 
of biodiversity. Monitoring, in turn, is subject to errors (Henry et al., 
2008) that would hence further exacerbate the environmental uncer-
tainty. For example, the malfunctioning of a passive acoustic monitoring 
device could prevent detecting a target species (Markova-Nenova et al., 
2023). Such uncertainty creates an economic environment in which 
undertaking (costly) efforts to reach a biodiversity target could lead to 
unsuccessful outcomes that would not be rewarded in a result-based 
scheme. This uncertainty, in turn, might negatively affect the willing-
ness to enroll in such a scheme.

Our paper aims to provide a framework to evaluate how monitoring 
quality affects agri-environmental schemes’ design. Using a theoretical 
model, we show how monitoring quality affects farmers’ decision to 
uptake a result-based scheme and, eventually, how it affects the agri- 
environmental scheme design. In detail, first, we analyze farmers’ de-
cisions on the intensity of effort to conserve biodiversity under a result- 
based scheme. We assume that farmers know the quality of monitoring, 
i.e., the probability that monitoring will correctly detect their success in 
conserving biodiversity (or, on the opposite side, to make mistakes). 
Second, we introduce farmers’ reactions to the regulator’s decisions to 
adopt better monitoring technologies and implement result-based 
schemes (rather than input-based ones). We model this second aspect 
through a Bayesian framework, in which monitoring quality is used to 
update the belief about biodiversity conservation success.

The novelty of this paper relates to the analysis of the impact of 
biodiversity monitoring quality on the performance of result-based agri- 
environmental schemes. The issue of uncertainty associated with result- 
based schemes has been analyzed for a long time (Bartkowski et al., 
2021; Derissen and Quaas, 2013; Drechsler, 2017). However, to the best 
of our knowledge, the distinction between the uncertainty generated by 
environmental processes and by monitoring quality has not been 
addressed. The distinction is, however, important as the latter is an 
endogenous variable for policymakers (Zabel and Roe, 2009). More in 
general, while it has not been evaluated in terms of scheme design, 
monitoring has often been indicated as a challenge for the imple-
mentation of result-based schemes, and it is increasingly analyzed 
(Alblas and van Zeben, 2023; Granado-Díaz et al., 2024; Tanaka et al., 
2022). Furthermore, in a recent survey, D’Alberto et al. (2024) reported 
that monitoring is a critical factor for the attitude of farmers toward 
result-based schemes. Also, Bayesian approaches for the assessment and 
design of monitoring biodiversity are not new (Runge et al., 2011). For 
example, Polasky and Solow (2001) apply it to the problem of site se-
lection, and Drechsler (2000) suggests it (but does not analyze) to 
explicitly take into account the improvement in data to choose among 
different management options. However, it has not been used to eval-
uate the performance of result-based schemes.

The paper’s results have a range of implications related to the 
formulation of biodiversity policy and, in particular, to the potential 
implementation of result-based schemes to improve agri-environmental 
policies. As our model suggests, the availability of monitoring technol-
ogies (their accuracy and their costs) affects the net value of biodiversity 
conservation created by result-based schemes. This ultimately de-
termines the design of agri-environmental schemes targeting biodiver-
sity (Gibbons et al., 2011), i.e., what type of incentive should be 
implemented. As we will see, result-based schemes provide a higher net 
expected value from biodiversity conservation than input-based ones, 
but only if monitoring accuracy is relatively high.

The paper proceeds as follows. Section 2 reviews the implications of 
improving biodiversity monitoring performance. In section 3, we 

describe the model and its results. Section 4 discusses such a result and 
concludes.

2. Background: An overview of biodiversity monitoring 
technologies, their performance, and their costs

Balmford and Gaston (1999) claimed that money spent on biodi-
versity data collection is worth its cost. However, quantitative evalua-
tions of the cost-effectiveness of different sampling protocols are rare or 
based on significantly simplified cost estimations (Gardner et al., 2008). 
The costs of biodiversity monitoring depend on the objectives and use of 
the information provided (Caughlan and Oakley, 2001). Monitoring for 
policy compliance, targeting and evaluation, scientific research, etc., 
requires different approaches and protocols, thus incurring widely 
different costs. Moreover, for the same objective, strategies and, there-
fore, costs may vary considerably (Schmeller et al., 2015). Monitoring 
cost considerations are particularly critical when the condition for a 
voluntary monetary payment is linked to the provision of an environ-
mental service (Gibbons et al., 2011). This is the case for payments for 
environmental services (Wunder, 2015), and more particularly for 
result-based schemes in which cost-effective2 monitoring is important 
for their success in achieving conservation targets (Schaub et al., 2025).

The identification and development of indicators and monitoring 
approaches fitting to result-based schemes are the focus of several 
studies (Elmiger et al., 2023; Matzdorf et al., 2008; Pinto-Correia et al., 
2022) because these are substantial in determining or hampering their 
acceptability and their successful implementation (D’Alberto et al., 
2024). Indicators for biodiversity monitoring should be designed to be 
ecologically relevant and cost-effective according to the context 
(Cantarello and Newton, 2008). Therefore, generalization about cost 
and feasibility is difficult as different indicators have strikingly different 
costs and involve different protocol requirements for the measurement 
of parameters along with notable labor time differences (Carlson and 
Schmiegelow, 2002; Levrel et al., 2010; Targetti et al., 2014). Although 
cost differences are too wide to provide a consistent overview, general 
evidence converges to consider labor and the availability of taxonomic 
expertise as the critical resources for field-based indicator measure-
ments (Gardner et al., 2008; Ji et al., 2013; Qi and Perry, 2008; Targetti 
et al., 2014).

In this prospect, several strategies have been suggested, such as data 
collection based on lower expertise (and thus low-cost) or innovative 
monitoring technologies relying on (semi)automatic identification that 
thus allows reduced labor time requirements. Levrel et al. (2010) and 
Oliver and Beattie (1996) suggested that inventories of terrestrial in-
vertebrates generated by non-specialists (e.g., based on morphospecies) 
were potentially cost-effective. For instance, estimations point to 
potentially relevant cost reductions for biodiversity surveys if citizen 
scientists could be engaged. Breeze et al. (2021) report costs for different 
pollinator monitoring schemes, designed to identify trends in the 
abundance of insect pollinators in the UK, ranging between £6159/year 
for a low-intense volunteer scheme vs. £2.7 M/year for an intense 
professional-based monitoring network. Based on a European-level 
farmland biodiversity pilot sampling, Targetti et al. (2014) estimated 
up to 77 % cost saving for a farm-level biodiversity sampling in the case 
of volunteer-based fieldwork. Levrel et al. (2010) reported that up to 4.4 
M EUR had been saved by the French administration thanks to the 
involvement of citizen scientists in the national-level butterfly and bird 
biodiversity monitoring. Note that cost savings are only some of the 
many advantages of citizen science approaches. This is particularly true 
in the case of farmland biodiversity monitoring, as the potential 
engagement of farmers in monitoring would disclose several additional 

2 We use the term cost-effective to indicate the cheapest option to obtain a 
desired level of accuracy, where accuracy can be measured in terms of statis-
tical power (Beranek et al., 2024).
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positive impacts on agricultural sustainability (Ryan et al., 2018).
Innovative technologies developed for biodiversity monitoring may 

have the potential to be employed for result-based schemes. Franco et al. 
(2007) found that a traditional bird transect survey was more cost- 
effective than telemetry, but targets and range influenced such a 
result. For instance, telemetry was the most cost-effective in poor access 
areas. Technical and data analytical advancements based on Unmanned 
Aerial Vehicles (UAV) make this option a valid alternative for moni-
toring biodiversity (Torresani et al., 2023). Results from on-ground 
comparisons of UAV and expert-based surveys of the presence of 
flowers as a proxy for pollinator abundance outline that UAV is not 
currently a ‘game changer’ for result-based schemes. Further research on 
standardized image elaboration is needed for real-life applications 
(Schöttker et al., 2023). Higher computation post-processing costs of 
UAV outweigh the reduced field-labor efforts. However, as a reduction 
of technology-related costs is expected, and as the lower unitary costs 
per area compared to field sampling allow economies of scale in the case 
of large-area monitoring, there is likely a relevant future potential for 
UAV monitoring.

Markova-Nenova et al. (2023) analyzed the cost/effort of bird 
monitoring based on passive acoustic recording to identify affordable 
monitoring solutions for result-based schemes. Results outline lower 
costs for human observation for ‘normal’ daytime monitoring. Acoustic 
monitoring had, on the contrary, a cost advantage in cases of monitoring 
of rare species that require more field trips or nighttime sampling. C.a. 
250 EUR /ha per day and nighttime monitoring in human monitoring vs. 
c.a. 175 EUR /ha in case of passive audio monitoring were estimated. 
Attention is also growing on the development of DNA-based techniques, 
but available cost estimations show contrasting results. Gueuning et al. 
(2019) reported almost double costs for metabarcoding in comparison to 
species identification. However, the result was based on laboratory ac-
tivities only, as the same fieldwork sampling served both parameter 
estimations. Opposite results are reported by Ji et al. (2013) for 
arthropod and bird monitoring. DNA sampling costs (from samples to 
taxonomies) were four times smaller in the three different countries of 
the study in comparison to the use of taxonomic expertise. The Centre 
for Biodiversity Genomics indicated significant cost reductions from 
bulk samples to species assessment (Secretariat of the Convention on 
Biological Diversity, 2021). The result was based on the consideration of 
decreasing analytical costs and a sequencing output of instruments 
approximately doubling every nine months. Such reports outline a range 
of potential advantages of metabarcoding, including laboratory skills 
that are more abundant than taxonomic expertise, the possibility to 
centralize the analysis in a few labs (a single instrument can currently 
process samples containing millions of specimens in a month), and 
availability of samples for third party verification. However, the use of 
DNA techniques in result-based schemes is conditional to the availability 
of databases fitting to the agro-ecological area and a future consistent 
reduction of reagent costs (Steinke et al., 2022). Bartkowski et al. (2021)
suggested circumventing the monitoring problem for result-based 
schemes employing models instead of direct monitoring data. Such an 
approach would ensure a range of advantages, including minimizing 
risks for farmers and, thus, an expected higher uptake of environmental 
schemes. However, this would also give up several positive aspects of 
result-based schemes. Some advantages of result-based over input-based 
are, for example, the valuable provision of information about biodi-
versity status, the inclusion of farmers’ knowledge in the process, and 
the stimulation of innovation connected to the ‘production’ of 
biodiversity.

Concerning the analysis of cost-effective monitoring solutions, re-
sults from several studies outline a non-linear relation between in-
dicators requiring higher efforts for their measurement and their 
accuracy as biodiversity proxies (e.g. Gardner et al., 2008; Qi and Perry, 
2008). Similarly, findings reported by Lüscher et al. (2014) and by 
Targetti et al. (2016) suggest that relatively low-cost parameters such as 
vegetation are accurate, economically feasible, and capable of 

conveying information to a range of users like farmers, administrators, 
and consumers. This is relevant for the setting-up of monitoring schemes 
for result-based schemes. Indeed, farmers need clear information about 
their capacity and/or probability of producing biodiversity, and there-
fore, intelligibility and trust in the measurement are of primary impor-
tance to facilitate the adoption of such contracts (D’Alberto et al., 2024; 
Gibbons et al., 2011). In this view, biodiversity monitoring for result- 
based schemes should not only provide reliable information on results 
but also inform farmers about their performances. This points to the 
relevance of including indicators that can reduce uncertainty for farmers 
and support their decision-making appropriately (Runge et al., 2011).

3. A framework for the assessment of different monitoring 
technologies

3.1. Model description

From the previous section, we understand that monitoring technol-
ogies vary in quality, costs, and the costs associated with improving 
accuracy. Building upon such findings, we now develop a model for 
assessing different monitoring technologies and their implications for 
designing result-based agri-environmental schemes. Our main intuition 
is that monitoring quality and its costs affect the net expected value of 
biodiversity conservation from result-based schemes.

First, we look at the perspective of the farmers. The key feature of a 
result-based scheme is that farmers who enroll are paid only if a specific 
conservation target is actually reached (and not for what they imple-
ment). As such, the economic environment in which farmers make de-
cisions is subject to a double source of uncertainty. The first one is the 
natural stochasticity of environmental processes. The second one is the 
quality of monitoring, i.e., the accuracy of monitoring programs in 
detecting the success of conservation efforts if this is achieved. Here, we 
model monitoring quality as the probability of correctly identifying the 
achievement of a biodiversity conservation target. We embed moni-
toring quality in the farmer’s program to evaluate its effect on their 
decision to enroll in a result-based scheme. Not surprisingly, increasing 
monitoring quality causes an increase in the farmers’ enrollment and in 
the intensity of their conservation efforts. As accuracy is increased, for 
any given effort level, the probability of obtaining the payment is higher 
(while costs do not change), and hence, their payoffs are greater.

Second, we introduce these elements in the regulator programs. Once 
the farmers have decided on the efforts and a certain level of conser-
vation is reached, monitoring provides a message on the status of the 
biodiversity. We model the regulator perspective through a Bayesian 
framework, in which the message is used to update the probability of 
conservation success and, hence, the expected value of the result-based 
scheme (the value of conservation minus the payments that are attrib-
uted to the farmers). As this computation depends on the accuracy of the 
technology that is used, the regulator maps different monitoring quali-
ties to their expected values and confronts them with their costs. Based 
on this, she then chooses the monitoring quality level that leads to the 
highest net expected value. Finally, she compares the net expected value 
of result-based schemes with that of input-based ones to decide what 
mechanism to implement. Monitoring quality affects then the net ex-
pected value of result-based schemes through three mechanisms: by 
influencing the efforts of the farmers, by determining the accuracy of the 
messages regarding the status of biodiversity, and by its costs.

We now mathematically describe the problem at stake. Imagine that 
there is a certain number of farmers in a given landscape. Each farmer 
(indicated by the index i) decides on the conservation effort level (ei). 
For simplicity, assume that they can implement “low” or “high” con-
servation efforts (respectively ei = eL

i and ei = eH
i ) in addition to no 

enrollment (ei = 0). For instance, ‘non-intervention’ practices, such as 
the delay of mowing a grassland, require lower efforts than an active 
intervention, such as seeding a flower strip. Assume that the higher 
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efforts entail both a higher probability of achieving a given conservation 
target and a higher cost. We use βH

i and βL
i to indicate respectively the 

probability of conservation success under the high and the low efforts 
(βH

i > βL
i ); similarly, we indicate the costs by kH

i and kL
i , with kH

i > kL
i .

Imagine that a regulator formulates a result-based scheme. In such a 
scheme, farmers would be rewarded if they enroll and if a biodiversity 
target is achieved and detected. Use P > 0 to indicate the payment level 
that farmers would obtain if the target were detected as a result of the 
monitoring. The payment is not attributed if the target is not detected (i. 
e., P = 0). Call η the monitoring results, i.e., η = 1 if the conservation 
target is detected and η = 0 if not. We assume that the regulator bears 
the cost of monitoring. Thus, this is not part of the farmers’ decision 
framework. As described in the previous section, monitoring is imper-
fect, and errors can be made. Assume that the probability of correctly 
detecting the biodiversity target if this is achieved is 0 < m < 1. In other 
words, m is our measure of monitoring quality. On the opposite side, 1 −

m is the probability of claiming that the biodiversity is not achieved even 
if this was the case (i.e., probability of incurring a false negative; this 
attains monitoring specificity). For simplicity, we neglect the possibility 
of having false positives, i.e., the probability of detecting the biodiver-
sity target if this is not achieved is equal to 0. Despite this simplifying 
assumption, the model adequately describes the main features of the 
problem at stake.

3.2. Farmers enrollment

As mentioned above, farmers who enroll in the scheme face a double 
source of uncertainty. The first is due to the stochasticity of environ-
mental processes, represented by the two probabilities βL

i and βH
i . The 

second one is due to the imperfect capacity of the monitoring technology 
to detect the success of conservation (the target is achieved), repre-
sented by m. The probability of obtaining the result-based payment is 
then differentiated by the effort the farmers implement. In case of low 
effort, such a probability is αL

i = m • βL
i , i.e., the probability that con-

servation success is detected times the probability that it is actually 
achieved. Similarly, the probability for the high effort is αH

i = m • βH
i . 

Given these uncertainties, farmers enrolling in the result-based scheme 
are unsure about the payoffs they would obtain (Derissen and Quaas, 
2013; Drechsler, 2017). Such a payoff is only certain ex-post, after the 
efforts’ implementation and monitoring outcome. Hence, the decision to 
enroll is based on the expected payoffs. We assume that a farmer is risk- 
neutral, and in case of low effort, the expected payoffs are given by3: 

πL
i = m • βL

i •
(
P − kL

i
)
+(1 − m) • βL

i •
(
− kL

i
)
+
(
1 − βL

i
)
•
(
− kL

i
)

(1) 

The first term in eq. (1) is the expected payoff when the biodiversity 
target is achieved, and the monitoring detects the improvement; the 
second term is the expected payoff if the monitoring does not detect the 
biodiversity target even if this is actually achieved; the third term rep-
resents the case when the biodiversity target is not achieved. In latter 
cases, enrollment in the scheme would only lead to the cost of kL

i . Eq. (1) 
simplifies to πL

i = βL
i • m • P − kL

i . Similarly, the expected payoff from 
enrolling and implementing the high effort is given by πH

i = βH
i • m • P −

kH
i . Farmers would then decide by exerting the effort (no enrollment, 

low or high effort) that would lead to the highest expected payoffs. 

πi = max
ei

(
0, πL

i , πH
i
)

(2) 

The level of monitoring quality determines whether farmers enroll in 
the scheme or not, and if enrolled, the effort level, ceteris paribus. First, 

consider whether or not the low effort leads to a positive expected 
payoff. This is checked by solving for m the inequality βL

i • m • P −

kL
i > 0. Such a condition is verified if m > mL

i =
kL

i
βL

i •P . Intuitively, the 

enrollment in the scheme makes sense only if the monitoring quality is 
sufficiently high. Otherwise, the uncertainty of monitoring will make 
enrollment unprofitable for farmers. A decrease in the opportunity costs 
and in the probability of improvement, as well as an increase in the 
payment level, decreases such a threshold. The threshold for having 
positive payoffs in the case of high effort is higher than that of low effort, 
as long as the ratio cost/probability is higher than that of the low effort 
kH

i
βH

i
>

kL
i

βL
i
. By comparing the expected payoff in the high and low effort, we 

determine the monitoring quality threshold that causes the switch to-

ward the high effort. Such a threshold is mH*
i =

kH
i − kL

i

(βH
i − βL

i )•P
.

To summarize, in case of low monitoring quality, very few farmers 
(only those with very low costs) enroll in the scheme. Once the moni-
toring has improved, farmers enroll by implementing the low efforts; 
further improvements in the monitoring quality lead to the imple-
mentation of the high effort. Fig. 1 depicts these patterns using a simple 
numerical example, which is described in A1 Appendix to section 3.2.

3.3. Policy implications: The decision to adopt a better technology

We now analyze the conditions under which it is advantageous, from 
the policy point of view, to adopt a technology of higher quality. To do 
so, we build upon the results of the previous section, but we take into 

Fig. 1. Farmers’ response to a result-based scheme under different quality of 
monitoring technology. The red line depicts the expected payoff if the farmer 
implements the low effort. In blue, the expected payoff is in case the farmer 
implements a high effort. The black line depicts the overall expected payoff 
implementing the optimal effort. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

3 Risk neutrality is surely a simplifying assumption (Iyer et al., 2020), but the 
model still captures the essential element of the issue at stake. Risk aversion can 
be included by, e.g., reformulating farmers’ utility using a Bernoulli utility 
function, as in Drechsler (2017).
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account a population of farmers rather than a single one. Moreover, we 
introduce a Bayesian framework to model a regulator’s decision to adopt 
one of the available monitoring technologies, which are characterized 
by different quality (m levels) and costs. A critical but reasonable 
assumption is that the regulator knows the distribution of the relevant 
parameters (probabilities and the costs) across the farmers, but she is not 
able to define the parameter levels for each one of them. To evaluate the 
problem at stake, assume that there are only two monitoring technolo-
gies, one of low quality (ml) and one with high quality (mh), with 
mh > ml. High-quality technology is more expensive than low-quality 
technology, such as C

(
mh) > C

(
ml). Intuitively, the regulator will 

adopt the high-quality technology if the expected value in terms of 
conservation generated by the scheme given the low-quality technology 
(EVrb

(
ml)) minus its costs is lower than the one provided by the high- 

quality technology (EVrb
(
mh)) minus its costs. Mathematically, adopt-

ing high-quality technology makes sense if EVrb
(
mh) − C

(
mh) >

EVrb
(
ml) − C

(
ml).

To compute EVrb
(
mh) and EVrb

(
ml), first, we assume that the regu-

lator knows the behavior of the farmers given different monitoring 
qualities. In other words, for example, the regulator knows that farmers 

will start implementing the low effort only in case m >
kL

i
βL

i •P, as we have 

shown in the previous section. She also knows the distribution of the 
probabilities of reaching the biodiversity outcomes (βL

i and βH
i ). To 

compute the values, first, it is necessary to update the probabilities of 
achieving the biodiversity target for each farm enrolling in the scheme, 
given the monitoring results (which are dependent on the monitoring 
quality) and the prior probabilities (which are βL

i and βH
i ). Then, the 

expected value of biodiversity conservation (the economic value of 
biodiversity conservation minus the policy costs) for each possible 
monitoring result (detection or not of the conservation target) is 
computed. Finally, considering the total probabilities of the two possible 
monitoring results, the overall value is computed and aggregated over 
the entire farmers’ population. The mathematical procedure is described 
in A2 - Appendix to section 3.3.

A simple numerical example, described in the appendix A2-b, illus-
trates the problem. For a given level of payment, moving from ml to mh 

entails an overall change in the farmers’ responses. As shown in Fig. 2, 
increasing the monitoring quality causes an increase in the number of 
farmers that enroll in the scheme, with an effect greater for those 
farmers that have a higher prior of reaching the conservation target (to 
the right of both graphs). In our example, in the case of ml, 879 farmers 
do not enroll, 50 farmers implement the low effort, and 70 farmers 
implement the high effort. In the case of high-quality monitoring, these 
numbers change to 656, 142, and 201, respectively. The amelioration in 
the monitoring quality causes an increase in enrollment and an 
improvement in the intensity of the effort, which enlarges the social 
value generated by the scheme. Overall, the RB scheme would enable 
obtaining EVrb

(
ml) = 5876.16€ and EVrb

(
mh) = 13097.85€ hence, the 

adoption of the high-quality technology makes sense if the difference in 
the cost between the high-quality technology and the low-quality one is 
lower than 7221.69€.

3.4. Policy implications: Technology developments and the 
implementation of result-based schemes

To investigate the issue further, we focus on the policy implications 
of the developments in monitoring technologies and examine how their 
associated costs are linked to improvements in accuracy. Imagine 
different monitoring technologies that are differentiated by the costs 
required to improve information quality. As an example, imagine that a 
monitoring technology is represented by expert-based sampling. 
Improving the quality of information would require, for instance, 
increasing the number of trips to the study site. Another technology 

might be the use of passive acoustic devices. Increasing the accuracy of 
the information would require increasing the number of such devices. In 
these two situations, the cost of monitoring a farmer is different for any 
given level of accuracy required. We model this notion by further 
qualifying the costs of monitoring. Assume that the costs of monitoring 
each enrolled farmer are a function of the monitoring quality and a 
parameter c. For simplicity, imagine a linear relationship. Call E the total 
number of farmers enrolled, i.e., those who exert a strictly positive effort 
as the eq. (2) solution. The monitoring cost of a result-based scheme is 
then C = m • c • E. Recall that the regulator bears such a cost, but the 
monitoring quality affects the total number of farmers enrolled.

We now explore the effect of advancements in monitoring technol-
ogies, represented by a reduction in the value of parameter c. In Fig. 3, 
we represent the simulations of the net expected value of the result- 
based scheme (the expected value minus the monitoring costs). We do 
so under two different monitoring technology costs, i.e., with cb < ca, 
with a fixed payment level (the numerical implementation is described 
in A2-b numerical examples). The decrease in the cost of monitoring 
quality (in Fig. 3, moving from the yellow to the blue curve) has two 
effects. First, the peak in the net expected value of the biodiversity 
conservation moves to the right, i.e., the optimal monitoring quality 
increases. Second, it increases the overall expected value of the biodi-
versity conservation generated by the result-based scheme. This second 
effect suggests that technology development might unlock the potential 
of result-based schemes, which would then provide a greater net ex-
pected value than input-based ones.

In an input-based scheme, farmers are offered a subsidy in exchange 
for a given effort in conserving biodiversity. Hence, in such a scheme, 
monitoring quality does not affect the farmers’ response. Imagine that 
the scheme requires the implementation of a high effort at a payment P. 
Farmers enroll only if the opportunity cost is lower than the payment, i. 
e., if P > kH

i . By aggregating all the efforts of the enrolled farmers, we 
obtain the resulting expected net value of the input-based scheme and 
compare it with the resulting value from the different result-based ones. 
One such comparison is depicted in Fig. 3, where the black line repre-
sents the expected net value of the input-based scheme. The graph 
suggests two main implications for the design of agri-environmental 
policies. First, there might be cases where the costs of the monitoring 
technology are so high that it is preferable to incentivize farmers 
through an input-based scheme. Second, there might be cases where the 
cost of a given technology would push the result-based scheme to yield 
the highest expected net value of conservation, but only if a minimum of 
monitoring quality is attainable. In the picture, if the monitoring quality 
is lower than about 0.6, the input-based scheme is the best performer.

4. Discussion and conclusion

Shifting to incentive schemes that pay farmers for what they achieve 
(i.e., result-based schemes) rather than for what they do (input-based 
schemes) is likely to improve the performance of biodiversity conser-
vation policies (e.g. Meier et al., 2024). The relevance of such an 
approach is also highlighted in the Common Agricultural Policy 
(Regulation (EU) 2021/2115, 2024). However, among others, the poor 
performance of monitoring technologies (in terms of quality or costs) 
hampers the implementation of result-based schemes. Monitoring ac-
curacy and cost are at the core of result-based schemes and have im-
plications for their acceptability (D’Alberto et al., 2024; Granado-Díaz 
et al., 2024; Tanaka et al., 2022). A range of recent developments (e.g. 
Biffi et al., 2024) in monitoring technologies might have relevant effects 
on the design of result-based agri-environmental schemes in the near 
future. Inspired by recent technological developments, we provide a 
framework to analyze the policy implications of potential improvements 
in biodiversity monitoring quality.

Our framework is based on a theoretical model that we use to eval-
uate how an amelioration in the capacity to correctly assess the 
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Fig. 2. Farmers’ response to a result-based scheme in case of low (upper panel) and high (bottom panel) quality monitoring technologies. Each farmer is mapped by 
the probability of conservation success (βL

i ; y-axis) and by the opportunity costs (kl
i; x-axis), both for the low effort. No enrollment is depicted in grey, and low and 

high efforts are shown in violet and red, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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achievement of a biodiversity target affects the farmers’ response in a 
result-based scheme. This result, in turn, is embedded in the regulator 
problem of selecting the monitoring technology and, ultimately, 
whether choosing a result-based or an input-based scheme. The results 
suggest that improving the monitoring quality increases the number of 
farmers enrolling in the scheme and their efforts. The improvement 
creates a higher expected value, in terms of biodiversity conservation, 
from the result-based schemes. Finally, if more precise or cheaper 
monitoring becomes available, result-based schemes are likely to 
improve the societal value of biodiversity conservation with respect to 
input-based ones.

The model relies on simplifying assumptions that deserve to be 
further explored. First, we do not address the possibility of having false 
positives resulting from monitoring. Their inclusion would influence the 
uptake of the result-based scheme as farmers’ probability of getting the 
payment is increased. Presumably, this will also affect the decision on 
the expected effort invested by farmers. Second, the model assumes that 
monitoring quality is embedded in farmers’ decisions. Likely, this is not 
straightforward in the real world, but the relevance of farmers’ aware-
ness and understanding of the indicators employed has been shown in a 
consistent body of literature (e.g. Elmiger et al., 2023; Pinto-Correia 
et al., 2022). This means that besides the monitoring quality, its capacity 
to convey information to farmers is of primary importance. Third, we 
assume that farmers are risk-neutral. Introducing risk aversion, as in 
Drechsler (2017), would undoubtedly enrich the analysis. Fourth, our 
approach relies on a monetary evaluation of biodiversity, which is 
necessary to compare the biodiversity outcome with the policy imple-
mentation costs. Despite the enormous literature on the topic (Bakhtiari 
et al., 2014; Nijkamp et al., 2008), and its importance in policy design 

(Dasgupta, 2022; Tienhaara et al., 2020), economic evaluation of 
biodiversity is a debated topic (Kallis et al., 2013; Nunes and van den 
Bergh, 2001). For example, most of the studies that evaluate biodiversity 
use proxies that do not fully account for the complexity of the issue 
(Bartkowski et al., 2015). Moreover, values might differ according to the 
provision scale (Hein et al., 2006). Finally, valuation depends on 
knowledge of the topic, which cannot be taken for granted (Spash and 
Hanley, 1995). For these reasons, the economic valuation of biodiversity 
should be taken cautiously. Further studies could extend the current 
framework in such a way that monetary evaluation is not necessary.

Despite the limitations, the results entail several policy implications. 
The recent developments in monitoring technologies -improving their 
accuracy and reducing their costs- can potentially change agri- 
environmental schemes’ design and increase their performance (Biffi 
et al., 2024). More accurate monitoring technologies are important for 
designing result-based schemes as these allow for reducing costs and 
improving the quality of monitoring. Poor monitoring capacity has 
indeed so far hampered the adoption of result-based schemes 
(Bartkowski et al., 2021), and our results show that the choices on the 
scheme design depend on the monitoring technology. The availability of 
novel monitoring techniques, coupled with the advancement in other 
digital technologies (Ehlers et al., 2021; Wätzold et al., 2024), suggests 
the possibility of further experimenting with implementing results- 
based schemes. As such, policymakers should make an effort to review 
novel possibilities for biodiversity monitoring technologies frequently. 
From another perspective, this also means that the design of a biodi-
versity result-based scheme should involve an a priori consideration of 
the biodiversity targets that are of interest and that can be effectively 
measured.
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Appendix A 

A.1. Appendix to section 3.2

Basic algebra leads to the simplification of the farmer’s expected payoffs. We represent eq. (1) for convenience: πL
i = βL

i • m • P − kL
i . A farmer 

enrolls in the scheme and at least exerts a low effort if the expected payoff from such a decision is positive. Mathematically, we solve the following 
inequality: 

πL
i = βL

i • m • P − kL
i > 0 (a1) 

Fig. 3. The expected net value of two result-based schemes characterized by 
different monitoring cost levels (ca > cb, respectively in yellow and in blue) and 
the expected net value from an input-based scheme (in black). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)
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and hence: mL
i =

kL
i

βL
i •P. Farmers with mL

i > m will implement the low effort. A parallel procedure leads to the definition of mH
i =

kH
i

βH
i •P.

We now determine the conditions under which farmers would implement the high effort rather than the low one. This implies that the expected 
payoffs from implementing the high efforts are greater than those from implementing the low effort. Mathematically, we solve the following 
inequality: 

βH
i • m • P − kH

i > βL
i • m • P − kL

i (a2) 

After rearranging (a2), we obtain m • P •
(
βH

i − βL
i
)
> kH

i − kL
i , or mH*

i =
kH

i − kL
i

P•(βH
i − βL

i )
. If the monitoring quality is greater than mH*

i , the farmer would 

implement the high effort. An additional condition is that farmers would obtain positive expected payoffs. Mathematically this would entail that 
mH*

i > mH
i , or that: 

kH
i − kL

i

P •
(
βH

i − βL
i
) >

kH
i

βH
i • P

(a3) 

After rearranging, (a3) becomes βH
i • kH

i − βH
i • kL

i > βH
i kH

i − βL
i • kH

i , which, in turn, it simplifies to βL
i • kH

i > βH
i • kL

i , or to k
H
i

βH
i
>

kL
i

βL
i
. Hence, the ratio 

cost/probability determines the best course of action. In summary, a farmer starts enrolling and implementing the low effort if mL
i > m. The farmer 

implements the high effort if mH
i > m. This is shown in Fig. 1. Such a figure can be reproduced using kL

i = 2, kH
i = 6, βL

i = 0.2, βH
i =0.3, and P = 50, for 

each level of m from m = 0 to m = 1.

A.2. Appendix to section 3.3

A.2.1. Theoretical framework
We now show the steps to compute EVrb(m), given the Bayesian framework.
Using the Bayesian notation, the priors of our problems are defined by β*

i ϵ
[
0, βL

i , βH
i
]
, i.e., the probability of conservation success that is associated 

with the solution of the maximization problem described in section 3.2. For example, if the optimal choice for a farmer is e*
i = eL

i , then the prior is β*
i =

βL
i . The monitoring quality θ(η|v) is the probability of detecting a successful conservation outcome (η = 1) or not (η = 0), given the status of 

biodiversity (if conservation is successful v = 1, otherwise v = 0). In other words, v represents the true state of nature, i.e., whether the biodiversity 
target has been reached or not. η represents the monitoring message, which can be positive or not depending on the monitoring technology’s intrinsic 
quality to detect the state of nature correctly. As explained in the text, we assume that θ(η = 1|v = 1) = m, θ(η = 0|v = 1) = 1 − m, θ(η = 1|v = 0) = 0 
and obviously (η = 0|v = 0) = 1. The probability of receiving a positive monitoring message given the prior belief of achieving the biodiversity target 
is, therefore, Ψi

(
m, η = 1, β*

i
)
= m • β*

i , and the probability of receiving a negative message from monitoring (biodiversity target not detected) 
weighted on the prior belief of non-achieving the biodiversity target is Ψi

(
m, η = 0, β*

i
)
= 1 − m • β*

i .
Given the results of the monitoring activities, the regulator updates her probability that the conservation target is actually reached. According to 

Bayes’ theorem, the posterior probabilities depend on the prior belief of achieving the biodiversity target (β*
i ), the monitoring quality θ(η|v) (i.e. the 

probability of a positive message η, given the achievement of the biodiversity target v), and the overall probability of receiving a positive message 
Ψi
(
m, η = 1, β*

i
)
= m • β*

i or a negative one Ψi
(
m, η = 0, β*

i
)
=1 − m • β*

i i. The posterior probabilities, according to Bayes’ theorem and using the no-
tation of the model here described, are given by: 

Ωi
(
m, v, η, β*

i
)
=

θ(η|v) • β*
i

Ψi
(
m, η, β*

i
) (a4) 

In our simplified theoretical model, the posterior probabilities are therefore computed as follows. The posterior belief of achievement of the 
biodiversity target given a positive message is given by: 

Ωi
(
m, v = 1, η = 1, β*

i
)
=

θ(η = 1|v = 1) • β*
i

Ψi
(
m, η = 1, β*

i
) =

m • β*
i

m • β*
i
= 1 (a5) 

The posterior belief of non-achievement of the biodiversity target given a positive message is 0, as in our simplified model, we do not consider false 
positives; a positive message would shift the belief to certainty: 

Ωi
(
m, v = 0, η = 1, β*

i
)
= 1 − Ωi

(
m, η = 1, v = 1, β*

i
)
= 0 (a6) 

The posterior belief of achievement of the biodiversity target given a negative message is given by: 

Ωi
(
m, v = 1, η = 0, β*

i

)
=

θ(η = 0|v = 1) • β*
i

Ψi
(
m, η = 0, β*

i

) =
(1 − m) • β*

i

1 − m • β*
i

(a7) 

The posterior belief of non-achievement of the biodiversity target given a negative message is: 

Ωi
(
m, v = 0, η = 0, β*

i
)
= 1 − Ωi

(
m, η = 0, v = 1, β*

i
)
=

1 − β*
i

1 − m • β*
i

(a8) 

We now compute the expected value generated by the farmer enrolling in the scheme once the monitoring positively detects the conservation 
target. This is given by: 

EVRB
i (m, η = 1) = Ωi

(
m, v = 1, η = 1, β*

i

)
• ( − P+B) − P •

[
1 − Ωi

(
m, η = 1, v = 1, β*

i

) ]
(a9) 

The first term in equation (a9) is given by the multiplication of the probability of the achievement of the target (if the monitoring is positive) times 
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the value of the biodiversity (B) minus the payment that is attributed to the farmer (P). The second term is the probability of actually not achieving the 
conservation target (despite the positive result from the monitoring) multiplied by the scheme’s costs.

The expected value generated by the farmer enrolling in the scheme in case the conservation target is not detected is just represented by the value 
of biodiversity, as the payment, in this case, is not attributed: 

EVRB
i (m, η = 0) = Ωi

(
m, v = 1, η = 0, β*

i
)
• B (a10) 

We now combine equations (a9) and (a10) to have the overall expected benefit from the scheme generated by farmer i, multiplying EVRB
i (m, η = 1)

and EVRB
i (m, η = 0) by respectively the probability that the result of the monitoring is positive or negative. This is the expected payoff attached to 

farmer i from his enrollment in the scheme, given the monitoring technology: 

EVRB
i (m) = Ψi

(
m, η = 1, β*

i
)
• EVRB

i (m, η = 1)+Ψi
(
m, η = 0, β*

i
)
• EVRB

i (m, η = 0)

= m • β*
i • EVRB

i (m, η = 1)+
(
1 − m • β*

i
)
• EVRB

i (m, η = 0) (a11) 

Finally, we sum over the farmers to obtain the aggregate benefits of the scheme: EVRB(m) =
∑

iEVRB
i (m).

A.2.2. Numerical examples
Here, we describe the numerical example we used to illustrate the theoretical framework. The parameters of the model are listed in Table 1.

Table 1 
Parameter levels used in the numerical example.

Parameter Description Values

N Number of farms 999
B Societal value of biodiversity conservation 100
βH

i Farmer-level probability of achieving the conservation target in case of high effort Drawn randomly from a uniform distribution with a = 0.5, b = 1.
βL

i Farmer-level probability of achieving the conservation target in case of low effort βL
i = 0.3 • βH

i

kH
i Farmer-level opportunity costs of biodiversity conservation in case of high effort Drawn randomly from a uniform distribution with a = 0, b = 100.

kL
i Farmer-level opportunity costs of biodiversity conservation in case of low effort kL

i = 0.2 • kH
i

P Payment levels P = [10,20,30, 40,50,60,70, 80, 90, 100]
m Monitoring quality m = [0.1, 0.2,0.3, 0.4,0.5,0.6, 0.7,0.8,0.9, 1]
c Cost of monitoring quality improvement c = [10,20, 50]

Fig. 2 is generated by considering ml = 0.2 and mh = 0.6, and P = 50, representing the average value of the opportunity cost distribution. Fig. 3
illustrates the case where P = 50, and ca = 2500, cb = 5000, cc = 12500.

Data availability

No data was used for the research described in the article.
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